Search results for "convolutional neural network"

showing 10 items of 179 documents

PerceptNet: A Human Visual System Inspired Neural Network for Estimating Perceptual Distance

2019

Traditionally, the vision community has devised algorithms to estimate the distance between an original image and images that have been subject to perturbations. Inspiration was usually taken from the human visual perceptual system and how the system processes different perturbations in order to replicate to what extent it determines our ability to judge image quality. While recent works have presented deep neural networks trained to predict human perceptual quality, very few borrow any intuitions from the human visual system. To address this, we present PerceptNet, a convolutional neural network where the architecture has been chosen to reflect the structure and various stages in the human…

FOS: Computer and information sciencesComputer Science - Machine LearningVisual perceptionComputer scienceImage qualitymedia_common.quotation_subjectFeature extractionMachine Learning (stat.ML)02 engineering and technology01 natural sciencesConvolutional neural networkhuman visual systemMachine Learning (cs.LG)010309 opticsStatistics - Machine LearningPerception0103 physical sciences0202 electrical engineering electronic engineering information engineeringFOS: Electrical engineering electronic engineering information engineeringperceptual distancemedia_commonArtificial neural networkbusiness.industryDeep learningImage and Video Processing (eess.IV)Pattern recognitionElectrical Engineering and Systems Science - Image and Video Processingneural networksHuman visual system model020201 artificial intelligence & image processingArtificial intelligencebusiness
researchProduct

ASR performance prediction on unseen broadcast programs using convolutional neural networks

2018

In this paper, we address a relatively new task: prediction of ASR performance on unseen broadcast programs. We first propose an heterogenous French corpus dedicated to this task. Two prediction approaches are compared: a state-of-the-art performance prediction based on regression (engineered features) and a new strategy based on convolutional neural networks (learnt features). We particularly focus on the combination of both textual (ASR transcription) and signal inputs. While the joint use of textual and signal features did not work for the regression baseline, the combination of inputs for CNNs leads to the best WER prediction performance. We also show that our CNN prediction remarkably …

FOS: Computer and information sciencesComputer Science - Computation and LanguageComputer scienceSpeech recognitionFeature extractionInformationSystems_INFORMATIONSTORAGEANDRETRIEVAL02 engineering and technology010501 environmental sciences01 natural sciencesConvolutional neural network[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL]Task (project management)[INFO.INFO-CL] Computer Science [cs]/Computation and Language [cs.CL]0202 electrical engineering electronic engineering information engineeringTask analysisPerformance prediction020201 artificial intelligence & image processingMel-frequency cepstrumTranscription (software)Hidden Markov modelComputation and Language (cs.CL)ComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciences
researchProduct

Convolutional Neural Network for Dust and Hotspot Classification in PV Modules

2020

20th IEEE International Conference on Environment and Electrical Engineering, EEEIC 2020, online, 9 Jun 2020 - 12 Jun 2020; Energies : open-access journal of related scientific research, technology development and studies in policy and management 13(23), 6357 (2020). doi:10.3390/en13236357 special issue: "Special Issue "Selected Papers from 20 IEEE International Conference on Environment and Electrical Engineering (EEEIC 2020)" / Special Issue Editor: Prof. Dr. Rodolfo Araneo, Guest Editor"

Control and OptimizationComputer science020209 energyReal-time computingEnergy Engineering and Power Technologydiagnosticconvolutional neural network02 engineering and technology010501 environmental sciencesSettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettricilcsh:Technology01 natural sciencesConvolutional neural networkphotovoltaic energyhot spotHotspot (geology)diagnostics0202 electrical engineering electronic engineering information engineeringenergy efficientElectrical and Electronic EngineeringEngineering (miscellaneous)0105 earth and related environmental sciencesSettore ING-IND/11 - Fisica Tecnica Ambientalelcsh:TRenewable Energy Sustainability and the Environmentbusiness.industryPhotovoltaic systemDirtartificial intelligencerenewable energy620Renewable energyElectricity generationinfrared thermographydustddc:620businessEnergy (miscellaneous)Efficient energy use
researchProduct

Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis

2016

This paper studies a combination of generative Markov random field (MRF) models and discriminatively trained deep convolutional neural networks (dCNNs) for synthesizing 2D images. The generative MRF acts on higher-levels of a dCNN feature pyramid, controling the image layout at an abstract level. We apply the method to both photographic and non-photo-realistic (artwork) synthesis tasks. The MRF regularizer prevents over-excitation artifacts and reduces implausible feature mixtures common to previous dCNN inversion approaches, permitting synthezing photographic content with increased visual plausibility. Unlike standard MRF-based texture synthesis, the combined system can both match and adap…

FOS: Computer and information sciencesRandom fieldMarkov random fieldArtificial neural networkMarkov chainComputer sciencebusiness.industryComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION020207 software engineeringPattern recognition02 engineering and technologyIterative reconstructionConvolutional neural networkComputingMethodologies_PATTERNRECOGNITION0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingComputer visionArtificial intelligencebusinessGenerative grammarTexture synthesis2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
researchProduct

Food Tray Sealing Fault Detection in Multi-Spectral Images Using Data Fusion and Deep Learning Techniques

2021

A correct food tray sealing is required to preserve food properties and safety for consumers. Traditional food packaging inspections are made by human operators to detect seal defects. Recent advances in the field of food inspection have been related to the use of hyperspectral imaging technology and automated vision-based inspection systems. A deep learning-based approach for food tray sealing fault detection using hyperspectral images is described. Several pixel-based image fusion methods are proposed to obtain 2D images from the 3D hyperspectral image datacube, which feeds the deep learning (DL) algorithms. Instead of considering all spectral bands in region of interest around a contamin…

Envasos de plàsticComputer sciencehyperspectral imagingComputer applications to medicine. Medical informaticsR858-859.7Convolutional neural networkArticleDeep belief networkPhotographyRadiology Nuclear Medicine and imagingElectrical and Electronic EngineeringTR1-1050Extreme learning machineImage fusiondata fusionbusiness.industryDeep learningHyperspectral imagingdeep learningPattern recognitionAliments ConservacióQA75.5-76.95Sensor fusionComputer Graphics and Computer-Aided DesignAutoencoderfault detectionElectronic computers. Computer scienceComputer Vision and Pattern RecognitionArtificial intelligenceTecnologia dels alimentsbusinessfood packagingJournal of Imaging
researchProduct

Hybrid Deep Shallow Network for Assessment of Depression Using Electroencephalogram Signals

2020

Depression is a mental health disorder characterised by persistently depressed mood or loss of interest in activities resulting impairment in daily life significantly. Electroencephalography (EEG) can assist with the accurate diagnosis of depression. In this paper, we present two different hybrid deep learning models for classification and assessment of patient suffering with depression. We have combined convolutional neural network with Gated recurrent units (RGUs), thus the proposed network is shallow and much smaller in size in comparison to its counter LSTM network. In addition to this, proposed approach is less sensitive to parameter settings. Extensive experiments on EEG dataset shows…

020205 medical informaticsmedicine.diagnostic_testComputer sciencebusiness.industryDeep learningPattern recognition02 engineering and technologyElectroencephalographyConvolutional neural network0202 electrical engineering electronic engineering information engineeringmedicineAnxiety020201 artificial intelligence & image processingArtificial intelligencemedicine.symptomF1 scorebusinessDepressed moodDepression (differential diagnoses)
researchProduct

CrowdVAS-Net: A Deep-CNN Based Framework to Detect Abnormal Crowd-Motion Behavior in Videos for Predicting Crowd Disaster

2019

With the increased occurrences of crowd disasters like human stampedes, crowd management and their safety during mass gathering events like concerts, congregation or political rally, etc., are vital tasks for the security personnel. In this paper, we propose a framework named as CrowdVAS-Net for crowd-motion analysis that considers velocity, acceleration and saliency features in the video frames of a moving crowd. CrowdVAS-Net relies on a deep convolutional neural network (DCNN) for extracting motion and appearance feature representations from the video frames that help us in classifying the crowd-motion behavior as abnormal or normal from a short video clip. These feature representations a…

Computer sciencebusiness.industryFeature extraction020207 software engineering02 engineering and technologyVideo processingMachine learningcomputer.software_genreConvolutional neural networkMotion (physics)Random forestFeature (computer vision)Mass gathering0202 electrical engineering electronic engineering information engineeringTask analysis020201 artificial intelligence & image processingArtificial intelligencebusinesscomputer2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
researchProduct

SuperHistopath: A Deep Learning Pipeline for Mapping Tumor Heterogeneity on Low-Resolution Whole-Slide Digital Histopathology Images.

2021

High computational cost associated with digital pathology image analysis approaches is a challenge towards their translation in routine pathology clinic. Here, we propose a computationally efficient framework (SuperHistopath), designed to map global context features reflecting the rich tumor morphological heterogeneity. SuperHistopath efficiently combines i) a segmentation approach using the linear iterative clustering (SLIC) superpixels algorithm applied directly on the whole-slide images at low resolution (5x magnification) to adhere to region boundaries and form homogeneous spatial units at tissue-level, followed by ii) classification of superpixels using a convolution neural network (CN…

Cancer Researchmedicine.medical_specialtyComputer scienceMagnificationContext (language use)lcsh:RC254-282Convolutional neural network030218 nuclear medicine & medical imaging03 medical and health sciencesneuroblastoma0302 clinical medicinebreast cancermedicinemelanomatumor region classificationSegmentationCluster analysisOriginal Researchbusiness.industryDeep learningDigital pathologydeep learningPattern recognitionlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmachine learningOncology030220 oncology & carcinogenesisHistopathologyArtificial intelligencebusinessdigital pathologycomputational pathologyFrontiers in oncology
researchProduct

Deep CNN for IIF Images Classification in Autoimmune Diagnostics

2019

The diagnosis and monitoring of autoimmune diseases are very important problem in medicine. The most used test for this purpose is the antinuclear antibody (ANA) test. An indirect immunofluorescence (IIF) test performed by Human Epithelial type 2 (HEp-2) cells as substrate antigen is the most common methods to determine ANA. In this paper we present an automatic HEp-2 specimen system based on a convolutional neural network method able to classify IIF images. The system consists of a module for features extraction based on a pre-trained AlexNet network and a classification phase for the cell-pattern association using six support vector machines and a k-nearest neighbors classifier. The class…

Computer science02 engineering and technologyConvolutional neural networklcsh:TechnologyIIF imageAlexNetlcsh:Chemistry03 medical and health sciencesconvolutional neural networks (CNNs)Autoimmune diseaseClassifier (linguistics)0202 electrical engineering electronic engineering information engineeringGeneral Materials Scienceautoimmune diseasesInstrumentationlcsh:QH301-705.5030304 developmental biologyIIF imagesFluid Flow and Transfer Processes0303 health sciencesDeep cnnIndirect immunofluorescenceaccuracybusiness.industrylcsh:TProcess Chemistry and Technologyk-nearest neighbors (KNN)General EngineeringPattern recognitionIIfClass (biology)lcsh:QC1-999Computer Science ApplicationsSupport vector machinelcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040System parameters020201 artificial intelligence & image processingsupport vector machine (SVM)Artificial intelligencebusinesslcsh:Engineering (General). Civil engineering (General)lcsh:PhysicsApplied Sciences
researchProduct

Deep Generative Model-Driven Multimodal Prostate Segmentation in Radiotherapy

2019

Deep learning has shown unprecedented success in a variety of applications, such as computer vision and medical image analysis. However, there is still potential to improve segmentation in multimodal images by embedding prior knowledge via learning-based shape modeling and registration to learn the modality invariant anatomical structure of organs. For example, in radiotherapy automatic prostate segmentation is essential in prostate cancer diagnosis, therapy, and post-therapy assessment from T2-weighted MR or CT images. In this paper, we present a fully automatic deep generative model-driven multimodal prostate segmentation method using convolutional neural network (DGMNet). The novelty of …

FOS: Computer and information sciencesComputer scienceComputer Vision and Pattern Recognition (cs.CV)medicine.medical_treatmentProstate segmentationFeature extractionComputer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONConvolutional neural network[SDV.IB.MN]Life Sciences [q-bio]/Bioengineering/Nuclear medicineConvolutional neural network030218 nuclear medicine & medical imaging03 medical and health sciencesProstate cancer0302 clinical medicineFOS: Electrical engineering electronic engineering information engineeringmedicineSegmentationArtificial neural networkbusiness.industryDeep learningImage and Video Processing (eess.IV)NoveltyDeep learningPattern recognitionElectrical Engineering and Systems Science - Image and Video Processingmedicine.diseaseTransfer learning3. Good healthRadiation therapyGenerative model030220 oncology & carcinogenesisEmbeddingArtificial intelligencebusinessCTMRI
researchProduct